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0OX1 3UB, UK

Received 28 August 1992, in final form 4 January 1993

Abstract. Stable lattice dynamical models of orthorhombic C;Hy are developed from
those devised by Hirshfeld and Mirsky for the cubic phase. These satisfactorily reproduce
measured phonon [requencies but cannot account for the crystal cohesive energy. Models
are also identified based on the work of Nyberg and Faerman, the principal difference
being bond- rather than atom-centred short-range interactions. These yield acceptable
crystal energies. All models have physically realislic molecular quadrupole moments.

1. Introduction

Recently there has been much interest in the behaviour of simple molecular solids
under pressure, see for example Pucci and Piccitto [1]. Our initial aim in describing
the pressure dependence of the lattice modes of C,H, has to some extent been
achieved in [2] where a model for cubic C,H,, originally derived by Hirshfeld and
Mirsky [3] (hereinafter veferred to as HM), was used to simulate the behaviour of
its orthorhombic form. We found that the unmodified model successfully reproduced
three of the five lattice frequencies observed at low temperatures (30 K) [4,5] and also
gave reasonable estimates for the crystal stresses and for the observed variation of
two of the Raman frequencies over the pressure range 1-3 GPa at room temperature
[6). The drawbacks of this model are (a) the calculated crystal cohesive energy is
too low by about 10%, (b) the simulated crystal is not in equilibrium and (c) there
is a small region of k space where one branch of the phonon dispersion curves is
imaginary.

The areas of agreement between the observations and the predictions of the
model were so emphatic that it was obviously worthwhile devoting effort to removing
the objections mentioned above.

Before proceeding it should be emphasized that the model was constructed
by bringing together transferable interaction potentials deduced by Mirsky [7] for
molecular crystals containing C, H, N and O atoms together with molecular charge
densities derived from Hartree~-Fock wave functions calculated by McLean and
Yoshimine [8]. As emphasized by HM, the process is not completely consistent since
the transferable Buckingham exp-6-type potential functions were derived to explain
crystal behaviour without the addition of electrostatic interactions.

Here we aim to develop physically realistic lattice dynamical models of C,H,.
We first devote attention to the model of HM in an effort t0 remove the objections
mentioned above, Subsequently we focus attention on the ab initic work of Nyberg
and Faerman (NF) [9].
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In section 2 we discuss the experimental information upon which the models were
constructed and in section 3 we outline the calculational approach. In section 4 the
various forms of the HM model are referred to and their modification described. We
next turn to the construction of a model incorporating the principles of the NF work.
Details of this are presented in section 5 and overall conclusions drawn in section 6,

2. Experimental and other information

2.1. The structure

Crystalline C,H, has two forms: a low-temperature orthorhombic form (space group
Cmea) [10] and a cubic form (space group Pa3) [11] stable between 133 K and the
melting point, The orthorhombic form has two molecules in the primitive unit cell,
four in the x-ray unit cell shawn in figure 1, with the molecules lying in the a—c plane
and making an angle & with the e axis. The Brillouin 2zone for this structure is shown
in figure 2 with the points and lines of high symmetry labelled using the scheme of
[12].

Ac

-__ "
*~

'\.\\ OKC\ .
Figure 1. X-ray unit celt of orthorhombic C;Hy:  Figure 2. Brillouin zone for the one face centred

full circles indicate molecules al y = 0, open circles  orthorhombic lattice (a < ¢). Full circles indicate
indicate molecules at y = 5 /2. symmetry points and open circles symmetry lines.

Structural data from a neutron diffraction study of C,D, [10] have been assumed
to apply to C,H,. These are given in table 1.

2.2. Crystal properties

Infrared and Raman spectroscopy have been used by a number of workers to
identify the Brillouin zone centre phonon frequencies. We rely principally on the
single translational and three rotational frequencies quoted by Anderson et al [4],
supplemented by the additional translational mode at 106 cm~! identified earlier by
Schwartz et al [5]. Although the iatter was not found by Anderson ef a! it is consistent
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with values given by them for C,D, frequencies in the same work. The experimental
information is collected together in table 2.

The cohesive energy of the cubic form of C,H, has been deduced as
—23.5 ki mol-! at 141 K, from saturation vapour pressure measurements [13]
supplemented by use of the Debye—Einstein approximation to estimate the entropic
contribution [14]. Apparently unaware of the existence of saturation vapour pressure
measurements in the range 100-130 K collected together in [15], Gamba and
Bonadeo [14] merely estimated the cohesive energy in the orthorhombic phase as
—26.4 kJ mol-!. However, using the data from [15] the cohesive energy can be
determined, after suitable allowance for the entropic contribution, to be approximately
—25.2 kJ mol~!, This value is also in accord with the fact that the energies of different
solid phases of the same material calculated from the same potential models differ
by about 7%, see, for example, [14] and [16].

3. Calculations

The physical properties of the models which were calculated are (a) the cohesive
energy, (b) the extent to which the model is in static equilibrium and (¢) phonon
frequencies corresponding to given wave vector values.

Standard lattice dynamical techniques in the harmonic and pair potential
approximation [17] were used to calculate the phonon modes. The molecules were
assumed rigid and interactions between the origin molecule and its 380 nearest-
neighbour molecules were included in the lattice sums. This number was to ensure
that all measures of the physical properties of interest had converged to an acceptable
degree. The lattice sums were all performed using a variant of the method due to
Evjen [18] which in essence involved ensuring that only complete molecules were
included in the summation. This is of prime importance in calculating the electrostatic
energy since it is possible to obtain relatively rapid convergence of the required sums
without invoking the Ewald transformation [19).

Derivatives of the free energy (which is approximated by the static lattice energy,
E) with respect to crystal parameters provide measures of crystal equilibrium. These
are expressed in dimensionless form as (a;/E)OE[da;. Strictly they should be
zero to ensure a physically meaningful model but it was found that for calculations
involving more than 140 neighbours values in the range +0.01 constitute acceptable
approximations to zero.

4, The Hirshfeld-Mirsky model

HM give three models for C;H, whose molecules all have zero net charge and dipole
moment and the same total quadrupole moment but differ in their detailed electronic
structure. The most complex of these has charges, dipoles and quadrupoles at each
atom site giving what is termed an ‘atomic moments’ (aM) model. In addition in the
crystalline phase there are three different exp-6 functions representing the C-C, C-H
and H-H interactions. Each of these models was investigated and found to echo the
tendency found by others [14, 16] for the crystal to be dynamically unstable at the Y
point of the Brillouin zone. Indecd there is a small region of & space surrounding the
Y point in which one librational frequency is persistently imaginary. This is clearly
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Lattice dynamics of orthorhombic CoH, 1305
shown in figure 3 which shows the dispersion curves for the AM model for two mutually
perpendicular directions A and C which intersect at the Y point. In figure 3 the curves
are labelled with the irreducible multiplier representations of the point proup of the
wavevector, tables for which can be found in [12]. In later investigations involving
variations of parameters it was found that ensuring this particular mode was real
usually sufficed to guarantee that all frequencies were real. It has been claimed [14]
that this mode instability is associated with the orthorhombic/cubic phase transition.
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Figure 3. Dispersion curves for HM atomic moments mode! for the mutually perpendicular
A and C directions showing region of imaginary frequencies.

The most successful of the 1M models was the AM one with monopoles, dipoles
and quadrupoles situated at both C and H sites. Its properties are summarized in
column I of table 2, the corresponding parameters being given in table 1.

4.1. Refinement of the atomic moments model

Improvement of the aAM model was attempted by varying simultancously all 14
potential parameters using the simplex method {20] until the following conditions
were satisfied:

(a) crystal energy = —25.2 kJ mol~!,

(b) two translational and three rotational frequencies (corresponding to & = 0)
bave the experimental values quoted in table 2,

(c) the measures of crystal equilibrium 8E/8a, BE/8b, E[/8c and O E /86
are all zero and

(d) all predicted frequencies are real.

A number of calculations were made using various starting points and initial
variations of parameters. The general conclusion was that there was no unique path
of variation and improvement in the fitting was still taking place after several hundred
iterations of the simplex procedure. Derails of the models to which the paths appeared
to be converging differed greatly in their parameter values even though each gave
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satisfactory agreement with the above constraints. For each path of variation it was
observed that frequency and energy values tended to stabilize before the equilibrium
measures.

Considerable computational effort was saved by first applying the simplex method
to models with a small number of neighbours (42) and then in the final stages
extending the number to 380. In the final stage of refinement charges and quadrupoies
were introduced at the molecule centre as well as at C and H sites. Details of one
such model are given in column I of tables 1 and 2.

The allowable extent of differences between calculated and constraining values
is, to some extent, a matter of opinion. In our view an acceptable model would
involve not more than 2% difference in frequencies, lattice energy within 10% of the
‘experimental value’ and equilibrium values (expressed as (a/E)8E/da etc) within
the range =£0.05. These values to some extent refiect the reliability of the experimental
data and the accuracy of determination of the model properties but also allow for
the comparative crudeness of the model. Our best model (see column II of tables 1
and 2) achieves the requirement for the four equilibrium conditions but two of three
rotational frequencies are in only fair agreement with experimental values and energy
agreement is far from satisfactory.

In our calculations the 16 potential parameters were varied to produce a best
fit of 12 experimental quantities. We therefore cannot regard the models as being
unique; however it was found, from a variety of initial potential parameter values
and initially assumed variations, that the final calculated values were often sufficiently
close to give overall confidence in the broad details of the models.

It must also be noted that in the minimization procedure the moments of the
charge distribution were unconstrained yet the final value of the quadrupole moment
is in reasonable agreement with that given in [21]. There are as yet no experimental
data with which to compare @, and Q.

In an attempt to improve the model further non-axis components of dipoles and
quadrupoles compatible with crystal symmetry were introduced. This was an attempt
to allow for the effect of polarization in the crystal environment. Cell parameters
and molecule lengths were also varied. Resulting changes in the parameters and
magnitudes of ‘off-axis’ components were sufficiently small to be classified as allowable
perturbations on the original values. However there resulted some worsening
of agreement with measured frequency values and the energy discrepancy was
unresoived. Since this model represented no essential advance no details are given
here.

4.2. k-dependent frequencies

Phonon frequencies were determined at each of 16000 points, uniformly distributed
over the irreducible octant of the first Brillouin zone. All frequencies were real in
contrast to the situation with the unmodified HM models each of which showed many
imaginary frequencies. The resulting frequency distribution is shown as curve (a) in
figure 4.

4.3. Summary

Minor changes of the HM AM model produced a stable model of orthorhombic
C,H, in reasonable agreement with observed phonon frequencies and with measured
molecular quadrupole moment. The major defect was poor agreement (—28%) with
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Figure 4. Phonon density of states for {g) modified HM model; (b) NF model V; (¢} NF
mode] 111. For 380 neighbours shown with solid curve; and (in b only) for 42 neighbours
shown with broken curves.

lattice energy. An attempted simulation of polarization effects produced no effective
improvement.

5. The Nyberg-Faerman model

Nyberg and Faerman (NF) [9] have calculated the lattice energy of both cubic and
orthorhombic C,H, using Gaussian atomic orbitals. They write the lattice energy as
the sum of exchange (£,,), coulombic (E,), inductive (E;;4) and dispersion (E,)
contributions:

By = B+ Ees + Eigg + Egigy-
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The sum of the exchange, covlombic and inductive terms, Eypger, Was determined
by an SCPF-MO calculation at the Hartree-Fock level and the dispersion term found
using a modified London approach in which localized MOs were centred on the C
and H atoms and at positions on the C-H and C=C bonds.

For the orthorhombic form NF obtained a value of —23.5 kJ mol~! for the lattice
energy, differing by 7% from the value of —25.2 kJ mol~! which we estimated from
experiment in section 2. Of this amount —13.2 kJ mol~! was attributed by them to
Eypscp and the remainder to Egy,,. Bond-bond interactions dominated Eg, with
only 0.5% being associated with interactions involving atomic centres.

This result suggests developing a lattice dynamical model for C,H, in which short-
range and coulombic interactions occur between bond sites in addition to coulombic
ones between atomic sites. It should be emphasized that the work of NF provides no
direct evidence for centering the short-range interactions wholly at bond sites but this
is clearly a simple extension of their conclusions.

H B ¢ 9 ¢ B gy

Figure 5. CaH: molecule showing positions of bond centres, B and O.

The positions of the interaction sites (O, B, C, H) on the C,H, molecule are
shown in figure 5. €y is given in [9] as 1.28 A. Since the NF results are expressed
only in terms of the total contributions to the lattice energy there is choice in the
form of the interactions and the magnitudes of the parameters involved.

In this work we assume Buckingham potentials between bond sites. The coulombic
interactions are generated by monopoles, dipoles and quadrupoles situated on both
atom and bond sites. Allowing for overall charge neutrality and for molecular
symmetry such a model has 19 parameters to be determined. These were found using
the simplex method [20]. As when considering HM based models some complication
of procedure was required because detcrmination of model properties (principally
librational frequency values) to an acceptable precision requires consideration of at
feast 248 neighbours. In order to minimize computational effort the initiai stages of
the minimization used 42 neighbours and this was extended to 380 neighbours in the
final stages. The experimental parameters 1o which the model is fitted remain, as
previously, at 12 thus giving a non-unique potential.

3.1, Calculational details

In table 1 the final potential parameters of three of our models are given and, in the
corresponding columns in table 2, the resulting calculated quantities. These models
were all more or less successful in reproducing the experimental data but differed
considerably in the details of their assumed interactions.

The starting point for the first model is given in tables 1 and 2. The parameters
of all three Buckingham potentials were initially assumed identical. The charges at
the four sites were g = + 4, g = +1, g5 = —2 and g, = —6 units in accordance
with what one might expect from naive notions of bonding. The unit (approx 0.05e)
was determined by comparing with the details of the HM model. The other dominant
coulombic feature of the HM model is large dipoles at C and H sites. A similar
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dominance was assumed here by placing dipoles of strength 0.95D at the bond sites
B. The starting values of the quadrupoles were all zero.

Initially all the 19 potential parameters were allowed to vary within the simplex
procedure [20]; this resulted in a relatively poor model and in order to improve
the fit the molecular interaction site distance, £3, was also allowed to vary. The
resulting model 1II of tables 1 and 2 had zone centre frequencies that were in
only fair agreement with experiment but lattice energy was much improved over
that of the HM model. Static equilibrium indicator values were acceptable though
they slightly exceeded the range of variation found when neighbour numbers were
increased beyond 248. A small number (21) of imaginary frequencies were found in
sampling 16000 % points within an irreducible octant of the Brillouin zone indicating
a mild departure from dynamical equilibrium.

In an attempt to remove these deficiencies the same starting model was used and
the same parameters varied. However the molecular bond interaction site distance
from the molecule centre, €5, was now varied from the beginning. This resulted
{model IV} in improvements in both energy and centre zone frequencies; static
equilibrium measures were completely satisfactory and dynamical equilibrium was
indicated by finding no imaginary frequencies among the 160000 sampled.

As with the modified HM model polarization effects were allowed for by
introducing variable off-axis components of the dipoles and quadrupoles. Since this
did not produce appreciable improvements in the models details are not given here,

In view of the overdetermined nature of the modeis {variable parameter numbers
exceed numbers of experimental quantities to which fitted) it seemed desirable to
test the sensitivity of the final model with respect to the starting point. To this end
a third model (V) was introduced in which the initial parameters were appreciably
different from those of I and IV. These are given in table 1. The effect was a
noticeable change in the details of the final model accompanied by a slight worsening
of the agreement with experimentally determined frequencies but a further marked
improvement in crystal energy. Static and dynamical equilibrium were still satisfactory.

The sampling of large numbers of points of the Brillouin zone as a test for
dynamical stability has been emphasized. This process also provides data for
constructing frequency distributions for the various models and hence the free energy
and the thermodynamic properties of the crystal. It was found that histograms for
models IV-V were similar. The differences between these two sets and that for
model III were significantly smaller than between them and those for the improved
HM model of model II. In figure 4 these histograms are shown. The similarities
between the various histograms is emphasized further in figure 4(b) where we show
those resulting from the same model V taking account of both 42 and 380 neighbours,
and this in spite of the fact that the dispersion curves for these models showed rather
large variations.

The dispersion curves were similar for all 380-neighbour models based on NF, the
main difference being in the details of the highest-frequency branches. In figure 6
we show the dispersion curves for model V labelled with the irreducible muitiplier
representations of the point group of the wavevector using the tables in [12].

5.2, Discussion

Three lattice dynamical models of C,H, have been identified based on the findings
of NF that the dispersion forces in C,H, can be bond centred. These are broadly
similarly successful in reproducing the experimentally observed lattice frequencies.
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Figure 6. Phonon dispersion curves for NF model V, labelled with the irreducible
multiplier representations of the point group of the wavevector [12].

Two of the models exhibited excellent static equilibrium, the other is not quite as
good in this respect though still acceptable. With minor exception in III the models
were dynamically stable, in the sense that all the phonon modes were real at each of
the 16000 sampled points in the Brillouin zone.

There is considerable variation in the details of the interactions of the various
models. This is such that it was impossible to infer any uniqueness about the individual
interactions between centres. In this situation the question arises concerning the
utility of the models. This can be established by showing they are capable of
predicting satisfactory values for observable quantities not taken into account in their
construction. One such quantity is the net molecular quadrupole moment that is
derived from the various monopoles, dipoles and quadrupoles placed at four types
of interaction site. AS seen in table 2 the range of calculated values is from 5.52
to 6.30 which is essentially the same as that of the values deduced in [21] from
experiment. This agreement together with the fact the lattice energy is, in contrast
to that of model I, in fair agreement with experiment suggests that all the models
were indeed realistic. The calculated values of higher moments show a much greater
variability but there are, to the authors’ knowledge, no experimental values with which
to compare them. They should thus provide a sensitive test of the models when such
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measurements become available.

A second predicted property, albeit a less sensitive one, is the phonon density
of states. Generally these values are very similar and any one would provide a
reasonable description of the thermodynamics of the crystal. Thus calcufations
of the thermodynamic properties would not distinguish between models. There
are differences of detail but these are such as to require comparison with direct
measurements of the phonon density of states in order to differentiate between
models.

All three models predict essentially the same value (~ 90 cm~!) for the out-of-
plane translational frequency which is not optically active. Again the small range of
variation suggests a general property of the NF model. Values for the fourth (thus
far unobserved) rotational frequency do not agree in this way. This together with the
higher charge moments and details of dispersion curves when they are observed will
provide further information with which to decide between the merits of the various
models.

A noticeable feature of all three models is 2 tendency for calculated values of the
largest translational frequency (experimental value 127 m~!) to be 2-4% too large
and for the 106 cm~! translation to be 5-6% too small. This points to a common
deficiency of the models. Since the original HM model fitted the frequencies but not
the equilibrium conditions this emphasizes the need to be wary of any model that
fits the optical modes and ignores equilibrium conditions. Such a model means, of
course, that the Taylor series expansion used in deriving the equations of motion of
the system [22] is made about non-equilibrium positions and hence is invalid.

In model V the total lattice energy (—23.2 kI mol~!) agrees with NFs computed
value of —23.5 kJ mol~! although it is partitioned in a rather different way: in model
V Eg, is —30.9 kJ mol~!, and thus Eypgep is +7.7 kJ mol~!, compared with NFs

—-1033 kJ mol~! and ~13.18 kJ mol~! respectively. It should, however, be noted
that in both cases total energy is about 7% greater than the experimental value.

6. Conclusions

The various Hirshfeld and Mirsky (HM) models for orthorhombic C,H, have been
investigated and a modified stable form developed of the ‘atomic moments’ AM one.
The chief objection to this is its poor agreement {~28%) with the measured lattice
energy. Its properties are compared with those of other models based on the ab initio
work of Nyberg and Faerman (NF) in which the dispersion force interactions are bond-
based rather than atom-centred. It is found that the position of this bond-centred
interaction must be shifted appreciably from that suggested by NF and partition of
lattice energy between the various forms of interaction is rather different.

The NF models are superior to the modified HM one in possessing a more
realistic Jattice encrgy. All models predict values for the net molecular quadrupole
moment in good agreement with experiment, all are highly stable in both a static and
dynamic sense, There is some variation in the details of predicted dispersion curves,
particularly at higher frequencies. The models display such a variety of parameter
values that it is difficult to deduce anything but the broadest details of the molecular
interactions.

A note of caution is sounded about using thermodynamic properties calculated
from phonon density of states to validate the microscopic details of models and
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attention is drawn to the importance of ensuring that the lattice is in static equilibrinm.
In connection with the latter point it should be emphasized that there would have
been no difficulty in identifying an otherwise completely satisfactory HM type of medel
if no attention had been paid to static equilibrium, This should be borne in mind in
assessing the merits of lattice dynamical models which ignore this fact!

Acknowledgments

One of the computer programs used in this work is a significant development of that
supplied to one of us (JWL) many years ago by Professor G S Pawiey, to whom we
express our thanks.

References

{1
2

)]
“
5]
[6]

g
8]

[9
{101

[11]
[12)
[13]
[14]
[15]

[16]
{11
[18]
[19)
(20}

[21]
(221

Pucci R and Piccitto G (ed) 1991 Molecular Systeins under High Pressure; Proc. 2nd Archimedes
Warkshap on Molecular Solids Under Pressure (Amsterdam: Elsevier)

Leech J W and Grout P J 1991 Proc. 2nd Archimedes Warkshop on Molecular Solids Under Pressure
ed R Pueci and G Piccifto (Amsterdam: Elsevier) pp 33740

Hirshield F L and Mirsky K 1979 Acra Crystaliogr A 35 366-70

Anderson A, Andrews B and Torrie B H 1985 J. Raman Spectrose. 16 202-7

Schwartz Y A, Ron A and Kimme! § 1971 J. Chemn. Phys. 54 99-105

Acki K, Kakudale Y, Yoshida M, Usuba 5, Tanaka K and Fujuvera S 1987 Solid State Commun,
64 1329-31

Micsky K 1978 Computing in Crystallography; Proc. Int. Swnmer School on Crystallography Computing
(Delft: Delft University Press)

Mclean A D and Yoshimine M 1967 Tables of Linear Molecular Wave Functions (San Jose, CA:
IBM

Nyberg)s C and Faerman C H 1989 Mol Phys. 67 447-54

Koski H K and Sandor E 1975 Acta Crysialioge B 31 350-3

Koski H K 1975 Acta Crysiallogr B 31 933-5

Van Nes G H T 1978 Doctoral Thesis University of Groningen

Grout P J, English 2 S and Leech J W 1975 J. Phys. C: Solid Srate Phys. 8 1620-32

Jones A H 1950 J. Chein. Eng Data 5 197

Gamba Z and Bonadeo H 1982 J. Chem. Phys. 76 6215-9

Landolt-Barnstein New Series 1961 Zaldenwerse und Funkiionen 6th edn, vol 11, part 2 (Berlin:
Springer) p 151

Filippini G, Gramaccioli C M and Simonetta M 1980 1. Chem. Phys. 73 1376-80

Walmsley S H 1967 J. Chem. Phys. 48 143844

Evien H M 1933 Phys. Rev. 39 675-87

Ewald P P 1921 Ann Phys, Lpz 64 253-87

See, for example,

Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1986 Numerical Recipes (Cembridge:
Cambridge University Press) pp 289-93

Dagg I R, Anderson A, Smith W, Missio M, Joslin C G and Read L A A 1988 Can. J Phys. 66
4539

Born M and Huang K 1957 The Dynarical Theory of Crystals (Oxford: Clarendon)



